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Abstract

Catheter ablation success rates for persistent atrial fib-
rillation (AF) remain limited, reflecting the complex inter-
play of anatomical, structural, and functional factors sus-
taining arrhythmia. Patient-specific biophysical models
provide a physics-constrained framework to simulate AF
mechanisms and predict individual treatment responses,
while large-scale in silico trials enable population-level
evaluation. To support clinical translation, models must
be generated efficiently and reproducibly. We previ-
ously introduced atrialmtk, an open-source, cross-platform
pipeline for constructing anatomically detailed atrial mod-
els from imaging or electroanatomic mapping (EAM) data.
atrialmtk produces meshes with anatomical region la-
belling, fibre architecture, and transmural variation, and
has been applied to cohorts exceeding 1000 geometries.
Here, we utilise and extend atrialmtk to compare methods
for personalising atrial models using late-gadolinium en-
hancement (LGE)- MRI and EAM data. LGE-MRI based
calibration includes fibrotic remodelling via conduction
slowing and replacement fibrosis, while EAM-based ap-
proaches compare conduction velocity calibration from
activation time maps against bipolar voltage and omnipo-
lar voltage based methods. We further demonstrate model
calibration to AF cycle length maps to inform patient-
specific simulation studies.

1. Introduction

Success rates for catheter ablation therapy in persistent
atrial fibrillation (AF) remain low, in part due to the com-
plex interplay of anatomical, structural and functional fac-
tors that contribute to arrhythmia initiation and mainte-
nance. Clinically, it is difficult to isolate the individual

contribution of each factor. Patient-specific biophysical
models offer a physiology- and physics-constrained frame-
work to simulate AF inducibility and predict responses to
multiple treatment strategies for an individual. In parallel,
large-scale in silico trials allow for assessment of treatment
efficacy across virtual populations.

To translate these cardiac computational models from
the research environment to the clinic, models must be
constructed quickly, reproducibly and at scale. We pre-
viously introduced atrialmtk, an open-source pipeline for
building anatomically detailed atrial models from imag-
ing or electroanatomic mapping (EAM) data [1]. This
platform generates atrial meshes with regional labelling,
fibre architecture, and transmural wall variation. It is
user-friendly, cross-platform compatible, and scalable, as
demonstrated by its application to a cohort of 1000 geome-
tries for population-based in silico studies.

Anatomical atrial models may be further personalised
to incorporate structural and functional information from
imaging or EAM data; however, it is challenging to de-
termine the optimal methodology for this personalisation
[2]. Here we utilise atrialmtk to build anatomical mod-
els from imaging and EAM data and then compare differ-
ent methods of model calibration as follows. For LGE-
MRI data personalisation, we compare different types of
fibrotic remodelling including conduction slowing and re-
placement fibrosis (percolation). For EAM-based calibra-
tion, we compare conduction velocity calibration from lo-
cal activation time maps collected at different pacing cy-
cle lengths to personalisation approaches based on bipolar
voltage or omnipolar voltage maps. Finally, we present
methodologies for calibrating to AF cycle length maps.
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2. Methods

We present here an example workflow to construct
patient-specific biatrial models from imaging or elec-
troanatomic mapping data. These models are person-
alised by integrating different types of fibrotic remodelling
or conduction calibration from LGE-MRI or EAM data.
Throughout our workflow, we present possible software
choices and open-source tools.

2.1. Image Segmentation & Meshing

Segmentation of the left and right atria in MRI or
CT data can be performed manually, semi-automatically,
or fully automatically. Manual segmentation may use
tools like CemrgApp [3], 3DSlicer [4] or ITKSnap
[5]. In addition, there are several trained networks
available for automated segmentation. The 2024 STA-
COM bi-atrial segmentation challenge provided a large
dataset for training deep learning algorithms to automat-
ically segment the left and right atria from LGE-MRI
(https://codalab.lisn.upsaclay.fr/competitions/18516). Our
proposed model used an ensemble of 5 residual encoder
Unet models [6].

Segmented surface meshes were remeshed to a stan-
dard resolution suitable for simulation studies using
meshtool software (e.g. 0.3 mm average edge length,
https://bitbucket.org/aneic/meshtool).

2.2. Mesh Clipping

We typically use Paraview software to clip atrial meshes
using the sphere clipping tool to open atrial meshes at the
pulmonary veins, mitral vein (MV), tricuspid valve (TV),
superior vena cava (SVC), inferior vena cava (IVC) and
coronary sinus (CS, https://www.paraview.org/).

2.3. Mesh Landmarking

To select atrial landmarks, a Python script written us-
ing the PyVista library was used to enable the user to click
on landmark locations, and these locations were written
to text files. For all meshes, general left atrial (LA) land-
marks were selected as follows: right superior pulmonary
vein (RSPV), right inferior pulmonary vein (RIPV), left
inferior pulmonary vein (LIPV), left superior pulmonary
vein (LSPV), the tip of the left atrial appendage (LAA),
and the base of the LAA. Specific landmarks were se-
lected as follows: (i) on the lateral wall, in line with the
LSPV, posterior of the LAA; (ii) on the septal wall, in
line with the RSPV (at the fossa ovalis); (iii) at the junc-
tion of the LA body and LSPV, at the centre of the pos-
terior wall path; (iv) at the junction of the LA body and
RSPV, at the centre of the posterior wall path. For the

right atrium (RA), a similar set of landmarking was per-
formed, with all locations shown on the atrialmtk github
page (https://github.com/pcmlab/atrialmtk).

2.4. Universal Atrial Coordinates Calcula-
tion

The Universal Atrial Coordinate (UAC) system is a stan-
dardised framework that enables consistent mapping and
visualisation of left or right atrial data in two dimen-
sions. It facilitates the registration of imaging and elec-
troanatomic mapping data across various patient-specific
meshes. UACs were calculated for assigning atrial regions,
registering fibre fields and mapping data between modali-
ties. This calculation involved solving Laplace’s equation
on the LA mesh with Dirichlet boundary conditions ap-
plied to specific boundary nodes using the openCARP sim-
ulator [7]. These boundary nodes were calculated using
python scripts within the atrialmtk library. For the LA, the
four PVs and LAA were mapped to standardised positions
within a unit square using two coordinates: a posterior MV
to anterior MV coordinates and a lateral-septal coordinate.
Equivalently for the RA, the SVC, IVC, CS and right atrial
appendage (RAA) were mapped to standard locations in a
unit square.
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Figure 1. Universal Atrial Coordinates for a Biatrial
Mesh
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2.5. Anatomical Region and Fibre Field
Assignment

UACs were used to include atrial structures in the
meshes, including crista terminalis, pectinate muscles
(PM), Bachmann’s bundle (BB) and the sinoatrial node
(SAN). These were mapped from an atlas bilayer mesh
from Labarthe et al. expressed in UAC [8, 9].

To generate bilayer models, nodes for LA and RA
meshes in specific anatomical regions were duplicated and
projected endocardially or epicardially. Linear connec-
tions were used to connect these structures to their equiva-
lent nodes on the LA or RA epicardial surfaces. Interatrial
connections were also added to the meshes at BB, the CS
and along the septal wall.

2.6. Electroanatomic Mapping Data Pro-
cessing

EAM meshes were also converted to UAC using
atrialmtk. EAM voltages or activation times for unipo-
lar, bipolar and omnipolar electrogram signal recordings
were interpolated to all nodes on the mesh using ei-
ther Radial Basis Function (RBF) interpolation or Gaus-
sian Process Manifold Interpolation (GPMI). Radial Ba-
sis Function (RBF) interpolation was implemented using
SciPy’s Rbf function in Python, with the inverse multi-
quadric RBF. The GPMI method uses a Gaussian Process
framework, utilising geodesic distances along the manifold
to improve interpolation accuracy for complex surfaces.
For GPMI, we used an open-source github toolbox ([10],
https://zenodo.org/records/5035230).

2.7. AF Simulations

Simulations were run using openCARP simulator with
the Courtemanche et al. ionic cell model and the mon-
odomain model for tissue propagation [7]. Following our
previous publication, the ionic conductances of the Courte-
manche et al. cell model were modified to reproduce
physiological heterogeneity between regions of the atria
[11,12]. AF was automatically initiated by seeing four spi-
ral wave re-entries [13]. Transmembrane potential signals
were post-processed to calculate phase and phase singular-
ity density maps [14].

2.8. LGE-MRI Fibrosis Modelling: Con-
duction Slowing & Replacement Fi-
brosis

To include fibrosis in meshes constructed from LGE-
MRI, we projected maximum intensities calculated along
surface normals to the mesh and divided these by the mean

intensity of the blood pool to obtain image intensity ratio
(IIR) values across the mesh.

For conductivity changes, tissue-level conductivities
were modified according to IIR thresholds as follows: IIR
< 0.9: 0.4 S/m (CV: 0.81 m/s), 0.9 <IIR< 1.4: 0.31
S/m (CV: 0.74 m/s) 1.4 <IIR< 1.6: 0.28 S/m (CV: 0.71
m/s), 1.6 <IIR:0.19 S/m (CV: 0.58 m/s) [15]. For ionic
changes, ionic conductances were modified in regions with
an IIR> 1.2. Replacement fibrosis was modelled by prob-
abilistically removing elements depending on IIR using a
percolation approach [16].

2.9. EAM Fibrosis Modelling: CV Calibra-
tion & Voltage Mapping

Each triangular element of the mesh was assigned a
peak-to-peak bipolar voltage (BV) value or omnipolar
voltage value through interpolation. Voltage models in-
cluded three types of fibrosis: conductivity changes, ionic
changes and replacement fibrosis i.e., percolation [17, 18].
These changes were implemented individually, or in com-
bination using the voltage maps, depending on different
voltage thresholds.

For conduction velocity (CV) calibration, a CV field was
first calculated from EAM local activation times across
the mesh by using the gradient method [19]. A continu-
ous mapping between CV and monodomain conductivity
tensor parameters was calculated through running 2D strip
simulations for a range of conductivity values, and applied
to each element of the mesh.

2.10. EAM Calibration: AF Cycle Length
Maps

AF cycle length (AFCL) was calculated for each unipo-
lar signal using autocorrelation by calculating the time in-
terval shift that corresponds to the highest correlation in
the signal. These AFCL values were then spatially mapped
across all nodes on the atrial surface using GPMI, which
accounts for sparse and noisy data [10]. Ionic conduc-
tances of the Courtemanche et al atrial cell model were
systematically adjusted so that the simulated AFCL repro-
duced the mean clinical AFCL.

3. Conclusion

Patient-specific models can be personalized using imag-
ing or electroanatomic mapping data, measured for differ-
ent rates and rhythms. Simulated AF dynamics and ab-
lation target identification are significantly influenced by
calibration data modality, highlighting the need for future
research into patient-specific model calibration.
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